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A short and efficient stereoselective total synthesis of (+)-7-deoxy-trans-dihydronarciclasine, a highly
potent antineoplastic agent and constituent of the Amaryllidaceae alkaloids, is described. Starting from
a known arylcyclohexylamine-type precursor 6, the C-ring with the required stereochemistry is con-
structed using a chemo- and stereoselective enone reduction (NaBH,4/CaCl, system) and a Mitsunobu

reaction. For the B-ring closure, the Banwell modification of the Bischler-Napieralski reaction was

applied.
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Amongst the family of Amaryllidaceae alkaloids, the highly
potent cytostatic alkaloids possessing the phenanthridone skeleton
and non-basic character form a small sub-group.! This alkaloid
family has been reviewed extensively.2 After isolation of the first
derivatives, narciclasine (1)° and lycoricidine (2)° the most
active”® representative, pancratistatin (3), was isolated from the
bulbs of Hymenocallis littoralis by Pettit and co-workers® in 1984.
Due to its very strong anti-cancer activity,”'? a large number of
total syntheses of pancratistatin have been reported.’>~2* Although
the cytotoxic activity of two further alkaloids [trans-dihydronarci-
clasine (4)° and 7-deoxy-trans-dihydronarciclasine (5),%° also iso-
lated by Pettit and co-workers (Fig. 1)], is commensurate with
that of pancratistatin, there are only a few total syntheses of these
alkaloids, 4%® and 5.2772° Surprisingly, the first total synthesis of
compound 5 was realized before? its first isolation.?® This synthe-
sis,?” and the two subsequent preparations®®2° are lengthy, com-
plicated and resulted in low overall yields. Thus, an efficient and
short synthesis of alkaloid 5 is required to enable a thorough bio-
logical evaluation.

Herein, we report a new synthetic route to 5 (Scheme 1) which
is significantly shorter and simpler than previous syntheses, even if
the preparation of 6 is taken into account.

The first step involved the selective conversion of the known
ketal 6°° to urethane 7 using a two-phase (THF/H,0) reaction with
methyl chloroformate, while keeping the hydroxy group intact.
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During the deketalization of 7 using stoichiometric p-TsOH, the
elimination of water also takes place giving enone 8. To convert en-
one 8 to allylic alcohol 9, Utimoto’s reduction method>' (NaBH,, in
the presence of CaCl,) was applied. This method gave allylic alco-
hol 9 stereoselectively in a good yield (82%).3? Calcium chloride
forms a chelate during the reduction ensuring the quasi cis—equa-
torial position of the new hydroxy group.>>34 Since the orientation
of the hydroxy group in the target molecule is quasi trans—axial,
inversion of the hydroxy group in 9 is necessary. For this purpose
the Mitsunobu reaction seemed to be the best method.®® Thus,
reaction of 9 under Mitsunobu conditions afforded the benzoate
10, in good yield (73%), after column chromatography. The cis-
dihydroxylation of 10 with OsO4/NMO took place smoothly in
THF/water, and the major product proved to be the required diol
11. Protection of the hydroxy groups was carried out with acetyl
chloride to afford compound 12, quantitatively.

To form the B-ring the Banwell modification3® of the Bischler-
Napieralski reaction was applied. The cyclization proceeds via a
lactim ether intermediate and hence the reaction mixture contains
a proportion of lactim ether after the cyclization. This was con-
verted to the corresponding lactam under acidic conditions, how-
ever, a reacetylation step with acetyl chloride was necessary due
to partial hydrolysis of the acetoxy groups under the conditions
used. Thus, phenanthridone 13 was obtained in a satisfactory yield
(56%). Finally, the protecting groups were removed with 1% meth-
anolic sodium hydroxide solution to form the title compound 5.3’

Compound 6 was first described by Weller and Seebach.>° They
synthesized it from the appropriate nitrostyrene under harsh
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R = OH: narciclasine 1
R =H: lycoricidine 2

R!= OH; R? = OH: pancratistatin 3
R!= OH; R?= H: trans-dihydronarciclasine 4
R!= H; R? = H: 7-deoxy-trans-dihydronarciclasine 5

Figure 1. The structures of the most active representatives of the phenanthridone alkaloids.

conditions followed by two further steps, but yields were only
partly reported.>%3® According to our new and more practical
method, amine 6 was obtained as follows (Scheme 2): after conju-
gate addition of nitromethane to 3,4-methylenedioxybenzylidene
acetone (14), the nitro-ketone 15 was cyclized with ethyl formate
via a Claisen aldol reaction.>® Next, the oxo group of the cyclized
product 16 was protected with ethylene glycol to afford ketal 17.

Finally, the nitro group was reduced catalytically to the amine 6
using 10% Pd/C catalyst, at 12 bar and 60 °C. The overall yield of
6 prepared from 14 was 39%.

In  conclusion, (%)-7-deoxy-trans-dihydronarciclasine, a
potent antineoplastic phenanthridone alkaloid, was synthe-
sized efficiently in 24% overall yield using a newly developed
method.
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Scheme 1. Reagents and conditions: (a) CICOOCHs;, THF/H,0 (70:30), NaOH, rt (87%); (b) TsOH, rt (88%); (c) NaBH4/CaCl, (1:1), MeOH, 0 °C (82%); (d) DEAD, PPhs, PhCOOH,
THF, 0 °C—1t (73%); (€) 0sO4/NMO, THF/H,0 (85:15), rt (95%); (f) AcCl, rt (quant.); (g) (i) Tf,0, DMAP, CH,Cly, 0 °C—rt, (ii) H*/H,0, rt, (iii) AcCl, rt (56%); (h) 1% NaOH/MeOH, rt

(quant).
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Scheme 2. Preparation of the starting material 6. Reagents and conditions: (a) MeNO,, NaOMe/MeOH, reflux (53%); (b) HCOOEt, NaOMe/Et,0, rt (85%); (c) oxalic acid, MeCN,

ethylene glycol, rt (89%); (d) 10% Pd/C, MeOH, 12 bar, 60 °C, 7 h (92%).
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